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Abstract. Previous solutions for slip in
elastic fluid-saturated rock masses are appropri-
ate for permeable faults because they assume no
change in pore fluid pressure on the fault (slip)
plane. Faults in situ are, however, often
barriers to fluid flow, possibly because they con-
tain much clay or very fine~grained gouge
material. Here, the solution for a dislocation
suddenly emplaced on an impermeable fault is used
to analyze coupled deformation diffusion effects
for impermeable faults. In contrast to predic-
tions for the permeable fault, the shear stress
induced by sudden slip on an impermeable fault
does not decay monotonically in time from the
undrained (instantaneous) value to the drained
(long-time) value, but instead, first rises to a
‘peak in excess of the undrained value by about 20%
of the difference between the drained and un-
drained values. This rise in shear stress
suggests that coupling between deformation and
diffusion is initially destabilizing. Using two
opposite signed dislocations to simulate a finite
length fault suggests that the rise in shear
stress occurs for 1.5 to 15 days for_a fault 4 km
in length and diffusivities of 0.1 m“/s to 1.0
m“/s. A characteristic time, defined as the time
needed for the shear stress on the fault_to decay
to one—half of its long-time value, ii a“/4c for
the impermeable fault compared with a“/l6c for the
permeable fault where a is half the fault length
and ¢ 1s the diffusivity. Consequently, diffusive
reloading of the fault, suggested as a contributor
to aftershocks, does not begin immediately and
occurs much more slowly for the impermeable fault.
The pore pressure change on the impermeable fault
is not zero as for the permeable fault, but is
discontinuous and the values are opposite in sign
on different sides of the fault., For the per=-
meable fault, the position of the maximum pore
pressure change moves away from the fault with
time, but the maximum pore pressure change for the
impermeable fault is always located at the dislo-
cation.

Introduction

The diffusion of pore fluid induced by slip on
a fault can introduce time-dependence into the

response of the material surrounding the fault.
This time-dependence has been suggested as playing
a role in several processes assoclated with
faulting: generation and migration of aftershocks
[Nur and Booker, 1972; Booker, 1974], stability of
precursory slip [Rudnicki, 1979], fault creep
[Rice and Simons, 1976], earthquake swarms
[Johnson, 1979] and response of water-wells to
propagating creep events [Roeloffs and Rudnicki,
1985]. The solutions that have been used to
analyze the coupling between fluid diffusion and
fault slip and to interpret relevant field obser-
vations are appropriate for permeable faults.
There is, however, considerable geological evi-
dence that faults in situ can act as barriers to
fluid flow possibly because the fault zones con-
tain much fine-grained material or clay gouge
[Wang and Lin, 1978; Wu et al., 1975]. 1In such
cases it is more appropriate to model the fault as
impermeable. This paper describes the solution
for a shear dislocation suddenly introduced on an
impermeable fault plane in a linear elastic,
fluid-infiltrated solid. This solution is
obviously a crude model for fault slip in the
earth's crust. Nevertheless, comparison of this
solution with that obtained for a permeable fault
[Booker, 1974; Rice and Cleary, 1976} suggests
differences in coupled deformation-diffusion
effects for permeable and impermeable faults.
These differences may be important in assessing
the significance of coupled deformation-diffusion
effects in fault processes and in designing proper
strategies for their observation. Of course a
more elaborate model is necessary for detailed
analysis of the fault processes that have been
mentioned, i.e., slip stability, aftershocks,

etc. Such models can, however, be constructed by
superposition of the dislocation solution.

This paper does not describe the details of the
solution method, but instead concentrates on the
results for two quantities of primary interest in
fault problems: the shear stress induced on the
fault plane and the pore fluid pressure. Differ-
ences with the corresponding quantities for the
permeable fault are emphasized and the implica-
tions of these differences for fault processes are
discussed.
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Fig. 1. Geometry of a plane strain shear disloca-
tion. The dislocation corresponds to sudden
introduction of a discontinuity in the x-direction
displacement on the negative x-axis.

Governing Equations

The governing equations for plane strain
deformation (in xy plane) of a linear, fluid-
infiltrated, porous elastic material can be
written in terms of the stresses ¢ and
ny and the pore fluid pressure p i fofxows.

do_ [ox + Boxylay =0 (1)

Boiy/ax + aayy/ay =0 » (2)

V2(c +0 _+2np)=20 (3)
XX yy

2
(c V© - 3/dt) [Oxx +o

+ @n/wpl =0 (4)
where c is a diffusivity, u = (V - v)/(1 - V),
and n = 3(v - v)/2B(1 + v )(1 - Yv). The
Poisson's ratios v and v govern drained (slow)
and undrained (rapid) deformation, respectively,
and B is the ratio of pore fluid pressure to mean
normal compression induced during an increment of
undrained response. The first two equations
express equilibrium in the absence of body forces
and the third compatibility of strains. The
diffusion equation (4) results from combining
Darcy's law and conservation of fluid mass and
using (3). The quantity in square brackets is
proportional to the fluid mass content per unit
volume of porous solid. Rice and Cleary [1976]
have given a full discussion of these equations
and have tabulated values of the material con-
stants (also, see Rudnicki [1985]). These
equations were originally derived in a different
form by Biot [1941] and are equivalent to those
studied by Booker [1974], although he chooses to
express them in terms of displacements and
restricts consideration to incompressible con-
stituents. This restriction corresponds to
Vo= Vz and B = 1.

The introduction of a shear dislocation at the
origin corresponds to slitting the negative x-axis
and creating a discontinuity in the x-direction

displacement u_ (Figure 1). Let 8(x, t) be the
displacement d%scontlnuity defined by

8(x,

€ = u (x, 07, ©) —u(x, 07, t) (5

where the notation is intended to indicate

that u_ is to be evaluated on the positive and
negative sides of the x—axis. For the sudden
introduction of a shear dislocation of magnitude b
at the origin

8§(x, t) = b H(-x) H(t) (6)

where H(...) is the unit step function. Because
the problem is antisymmetric about the x—axis, it
is possible to restrict consideration to the upper
half-plane y > O with boundary conditions applied
to y = 0. Thus, (5) can be expressed as

8(x, t) = 2u(x, 0%, ©) ¢2)

Because of antisymmetry and continuity of trac-
tions across y = 0, 0 is zero on the fault
plane: ¥y

oyy(x, 0, t) =0 (8)

Darcy's law states that the fluid mass flux is
proportional to the gradient of pore fluid
pressure, Consequently, for an impermeable fault
plane the pore pressure satisfies the following
condition:

%g (x, 0, t) =0 (9)

In the previous solutions due to Booker
[{1974] and Rice and Cleary [1976], the pore
pressure was assumed to be continuous across the
fault plane. Because of antisymmetry, the value
of p on the fault plane is then required to be
zero. Obviously, 9p/3y will not be zero on the
fault plane in this case, corresponding to fluid
flow across the fault plane. Hence, these solu-
tions are appropriate for a permeable fault. For
an impermeable fault, the pore pressure need not
be continuous across the fault, but by anti-
symmetry the values on opposite sides of the fault
are still required to be equal in magnitude and
opposite in sign.

The governing equations (1), (2), (3), and (4)
are expressed in terms of the stresses and pore
fluid pressures. Consequently, it is convenient
to convert (6) and (7) to conditions on the
stresses. The constitutive relation for the
strains of the solid matrix EGB in terms



of the stresses and pore fluid pressure is as
follows:

2Gca8 = 0.8” v(oxx+ Uyy)6a3+ 21'1(1--\));)60‘B (10)

where a,B = x,y and § is the Kronecker delta.
The strains are relatgg to the displacements by

=1
eaB == (Bua/ax8 + aus/axa) (11)

Substituting (11) into (10) and evaluating on y =
0 for o« = B = x yields

G %ﬁ’(x, t) = Uxx(l = V) + 2n(l - v)p (12)

where (7) and (8) have been used. Differentiating
(6), substituting into (12) and solving for ¢

: XX
yields

B TTQTRCT Spirac(®) H(E)

UXX(X,O,E) = y
- 2n p(x,0,t) (13)

where GDI A is the Dirac delta function. The
details o? ghe solution method will not be given
here but the general approach was to use the
Laplace transform on time and the Fourier trans-
form on x. Expressions for the complete stress
and pore pressure fields have been obtained, but
these are cumbersome and will not be displayed.
Two quantities of most interest, the pore fluid
pressure and the induced shear stress on the fault
plane, are, however, given by relatively simple
expressions and these are discussed in the follow-
ing sections.

Shear Stress on the Fault Plane

The shear stress on the fault plane (y = 0) due
to sudden introduction of a unit dislocation at
the origin corresponding to left-lateral slip is
given by

Gb
-V

2
cxy(x, 0, t) = i:ij———T:%; F [x /Chet) ] (14)

The time dependence of the solution is expressed
by the function F:

Fle]=1-u 27 - ¢l - 7] (15)

where 4 = (v - v) / (1 - V)., At t = O+,

immediately dfter the introduction of the disloca-
tion, £ = ®, F = 1 and (14) reduces to the usual
elasticity expression based on the undrained
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Poisson's ratio. At long times, t » ®, £
approaches zero and F[0] = (1 = v ) / (1 = v).
Thus, (14) reduces to the usual efasticity
expression based on the drained value of Poisson's
ratio. This behavior is identical to that for the
dislocation introduced on the permeable fault.

The time dependence at intermediate times is,
however, much different. For comparison, the
function expressing the time dependence of the
induced shear stress for a dislocation on a
permeable fault is given by [Rice and Cleary,
1976]

Pl =1 - el - 78 (16)

where the subscript p denotes the permeable fault.
Figure 2 plots the following quantity
oxy(x, 0, t) - ny(x, 0, =)

oxy(x, 0, 0) - ny(x, 0, =)

(17)

against het/x? for the permeable and impermeable
fault; this is the same as a plot of F and F
against the reciprocal of their arguments. ]
shown, the induced shear stess for the permeable
fault decays monotonically with time whereas that
for the impermeable fault first rises above the
undrained value before decaying to the drained
value. The height of the peak above the undrained
value is about 20% of the difference between un-
drained and drained values. To estimate the time
scale of the changes in shear stress, two disloca-
tions of opposite sign can be used to simulate a
finite length fault., Rice [1980] suggests placing
the dislocations at the centroids x = + 2a / m of
the slip distribution caused by a uniform stress
drop on a fault of length 2a. The time—-dependent
stress drop is then given approximately by

bt (bT) Fla? / 7 ct] (18)
t=0

Figure 3 plots the stress drops in nondimensional
form for both the permeable and impermeable faults
against ct/a”.As expected from Figure 2, the
stress drop for the impermeable fault continues to
decrease for a time after the imposition of the
slip, but then increases and eventually reaches
the drained value. The minimum in the stress drop
for Ehe impermeable fault occurs at

ct/a® = 0.0325, For a Eault length 2a = 4 km and
a diffusivity ¢ = 0.1 m"/s, a value suggested by
Rice and Simons [1976] as representative of field
conditioni, t = 15 days. If the diffusivity

¢ =1.0m/s, then t = 1.5 days, The stress drop
for the permeable faylt reaches half of its long-
time value when ct/a” = 0.0625 whereas the stress
drop for the impermeable fault,does not reach half
its long time value until ct/a” = 0.2425. For a
2a = 4 km and ¢ = 0.1 m“/s these values correspond
to approximately 30 days and 112 days.
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Fig. 2.

The differences in the fault-plane shear stress
solutions for the permeable and impermeable faults
have implications for several fault processes.
First consider that the slip modelled by the dis-
locations is emplaced seismically. The solution
for the permeable fault states that the shear
stress induced on the fault plane has its highest
value, the ungrained value, immediately after slip
occurs (t = 0 ), and then decays monotonically to

Time dependence of the shear stﬁe
function of the nondimensional time ct/x

i
3.0
4ct/x?

ss at a fixed position on the x—-axis as a
where ¢ 1s the diffusivity.

the drained value. On the other hand, the solu-
tion for the impermeable fault indicates that the
induced shear stress will rise from its value
immediately after slip is emplaced for a period on
the order of days. This means that the effect of
coupling between deformation and diffusion is
initially destabilizing for the impermeable fault.
It is possible that this increase could trigger
additional slip. Also, although the shear stress

A
oopb-H——— - - —" - —-\—-"— — — — — — =~ —
— IS
| 8 —_permeable
] I;
< T—impermeable
19 sof per
? ? ——4‘}—552%4‘F7
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! 2 3 4 5
ct/a?
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Fig. 3. Stress drop versus time divided by the diffusion time az/c for a fault of

length 2a.
fault.
reloading of the fault.

Two dislocations of opposite sign are used to simulate a finite length
The increase of the stress drop with time is accompanied by diffusive



(4]

(d)

Fig. 4. Graphical construction originated by Rice
[1979] for illustrating fault slip instability.
(a) Fault of length 2a_sustains a shear stress

T and average slip 8. The fault is loaded by
far-field stresses 1, (b) The solution for

sz and 6 corresponding to a value of 1, 1s given
by Ehe intersection of the Te versus § sti+ -
tive relation and a straight fine representing the
effective unloading stiffness of the surrounding
material. The slope of this line is minus

G/2ag where E depends on the geometry (e.g. plane
strain versus axisymmetry) and the Poisson's ratio
of the surrounding material. (c) At point A
further increase in T, cannot be accommodated by
quasi-static response. Note that the increments
in § corresponding to equal increments of T,
increase as point A is approached. (d) Delay of
instability by coupled deformation-fluid
diffusion. Because the unloading stiffness of the
material surrounding the fault 1s greater for more
rapid deformation, instability is delayed until B.

on the impermeable fault ultimately decays with
time, it remains higher than the shear stress on
the permeable fault at any finite, non-zero time.

The differences between the solution for the
permeable fault and that for the impermeable fault
also require some reassessment of inferences by
Nur and Booker [1972] and Booker [1974) (also,
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discussed by Rice and Cleary [1976] and Rice
[1980]) on the possible effects of coupled
deformation and diffusion on aftershock processes.
These authors noted that the solution for the
permeable fault implies that the stress drop
accompanying imposition of a fixed amount of slip
decreases in time within the slipped region but
increases outside of it. Consequently, the total
shear stress increases in time within the slipped
region but decreases outside it. As explained by
Rice [1980], this is consistent with aftershock
activity that is confined to the slipped region
rather than the presumably more highly stressed
surrounding region and is controlled by a time-
dependence shown in Figure 3. Because the stress
drop for the impermeable fault initially continues
to drop after introduction of the dislocation and
then rises more slowly than for the permeable
fault, one would expect reloading of an imperme~
able fault to occur more slowly than for a
permeable fault. If the time at which the shear
stress drop reaches half its long-time value is
regarded as characteristic of the duration of
aftershock activity, then this time scale is
approximately four times as long for the
impermeable fault although no aftershock activity
would be expected in the period during which
stress drop is decreasing for the impermeable
fault.

The solution also suggests that predictions of
coupled deformation-diffusion effects on
precursory slip may be different for permeable and
impermeable faults. Figure 4 shows the graphical
construction originated by Rice [1979] and used by
Rudnicki [1979] to discuss the stabilizing effects
due to coupled deformation-diffusion in the
material surrounding a permeable fault.

Initially, the material surrounding the fault
responds in drained fashion because slip occurs
slowly, by comparison to the diffusion time, under
the action of increasing tectonic stress Ty
(Figure 4b, c). As instability, predicted on the
basis of the drained response, is approached
(point A in Figure 4c, 4d), the accelerating fault
slip induces the shorter time response of the
material surrounding the fault. Because this
response is stiffer than the drained response,
instability is delayed. The response to
instantaneous slip is undrained and, hence, insta-
bility occurs when the slope of the

T versus § curves equals the undrained unload-
ing stiffness of the surrounding material (B in
Figure 4d). Because of the differences in the
time dependence of fault stress for the permeable
and impermeable faults, the transition from
drained to undrained behavior will be different.
Rudnicki's [1979] analysis of the permeable fault
predicted that the delay in the onset of fault
instability due to coupled deformation-fluid
diffusion effects occurred over such a short-time
period that detection would be difficult. Whether
the different time-dependent response of the
impermeable fault gives rise to a longer
precursory period is unclear.
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Fig. 5. Pore pressure,
by a sudden dislocation
other side of the fault
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Pore Fluid Pressure

For the impermeable fault the induced pore
fluid pressure is given by

B(L + v )Gb 1
p(x, y, t) = 3;(T~:—%;7— {(y/rz)erf [y/(Acc)/Z]

2
Tyt b %/ (4ee)'2 1)

(19)

1
+ (2x/n/2r2)e

where r? = x%+ yZ, ert(E), is the error function
defined [Abramowitz and Stegun, 1964, 7.1.1] as

1 A
erf(e) = (2/72) | ¢

da (20)
o
and Daw(f), is Dawson's integral, defined as
[Abramowitz and Stegun, 1964]
_52 £ aZ
Daw(g) = e f e da (21)
o

Equation (19) gives the pore pressure in the half-
plane y > 0; the values in the lower half-plane
y < 0 are the negative of those in (19).

Figure 5 plots the non-dimensiomnal pore
pressure P

form, induced on the positive side (y = OV)
fault. The pore pressure induced on the
in magnitude and opposite in sign to that

1
3w/ 2(1 - vu)(4ct)/2
P TTImI T ) o P (22)
on the positive side of the fault plane (y = 0%)

for a fixed tiuwe t > O. Because the fault plane
is impermeable, the pore pressure is discontinuous
and the values on the lower side of the fault
plane, y = 0 , are the negative of those shown in
Figure 5. Increases in pore pressure decrease the
effective compressive stress on the fault, that
is, the total compressive stress minus the pore
fluid pressure and promote further slip. Con-
sequently, a measure of the tendency of the
induced stress changes to promote slip is

2m(l - vu)

y(x, t) = )

[oxy(x, 0, t) + ¢ p(x, 0,t)]
(23)

where ¢ is a friction coefficient (because of (8),
the normal stress on the fault is cgyatant). This
quantity is plotted against x/(4ct) in Figure
6 for the positive side of the fault (y = 0 ).
The dashed curve shows the shear stress only. The
values of y on y = 0" lie above it. This suggests
that slip is promoted on the side of the fault
with positive pore pressure and inhibited on the
side with negative pore pressure.

For a finite length fault there will be posi-
tive and negative contributions to the pore
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Combined effect of the shear stress o
p(x, 0, t) induced on the positive side (y =
curve shows o, (x, 0, t) in nondimensional form for the impermeable fault.

(x, 0, t) and pore fluid pressure
) of an impermeable fault. The dashed
Because

the pore presgxre is zero on the permeable fault the curve labeled "permeable"” is
cxy(x, 0, t) in nondimensional form. The plot is for ¢ = 0.6.

pressure on each side of the fault. If the fault
is modelled simply as two dislocations of opposite
sign, the largest pore pressure changes will occur
at the dislocations, near the ends of the fault,
and be of opposite sign at the two ends on the
same side of the fault. As a specific example,
consider a finite length fault with the left
lateral slip geometry shown in Figure 1; the pore
pressure will increase on y = 0% near the right
end and on y = 07 near the left end. A mani-
festation of this prediction might be the presence
of transverse subsidiary faults in the regions of
pore pressure increase, but not in the regions of
decrease. Note, however, that the uncoupled
elasticity solution predicts an increase in com-
pressive mean stress, in the regions of pore
pressure increase.

The curve labeled "permeable” in Figure 6 is
the shear stress on the permeable fault; because
the pore pressure is zero on the permeable fault,
¥ is equal to the shear stress. As shown, the
shear stress ahead of the dislocation is greater
for the impermeable fault.

Figure 7 shows contours (solid lines) of the
nondimensional pore pressure (22) for y > 0 at a
fixed time t > 0. As required by the condition of
no flow across the fault, the contours of constant
pore pressure intersect the fault at right angles.
Because flow occurs in directions of decreasing
pore fluid pressure, the flow near the fault is
away from the origin. For comparison the pore
pressure induced by sudden introduction of a dis-

location on a permeable fault is [Rice and Cleary,
1976]

B(1 + vu)b ) D
p = Tl = “u) Gr;i [l - exp(~-r /Act)] (24)

Contours of this pore pressure in the same non-
dimensional form are shown as dashed lines in
Figure 7. As noted by Booker [1974], the maximum
pore pressure change occurs at a position that
diffuses away from the fault with time. In con-
trast, the maximum pore pressure change for the
impermeable fault occurs at the edge of the slip
zone and remains there. The contours for the two
cases merge away from the fault, but are different
near the fault because of the different boundary
conditions. 1In particular, note that the pore
pressure changes are much greater near the
impermeable fault.

Nur and Booker [1972] have noted that pore
pressure changes induced off the fault plane could
reduce the effective confining stress and con-
tribute to the occurrence of aftershocks. A
proper evaluation of this suggestion would need to
consider, in addition, the stress changes at
different orientations off the fault plane.
Nevertheless, the pore pressure distribution near
the fault seems sufficiently different for
permeable and impermeable faults that differences
in aftershock distribution might be anticipated if
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b ylact

2.0
xA/4ct
Fig. 7. Comparison of the contours of the non-
dimensional pore pressure (22) for permeable

(dashed) and impermeable (solid) faults. Plot is
for a fixed time not equal to zero.

indeed coupled deformation diffusion effects play
a prominent role.

Concluding Discussion

This paper has presented the solution for the
shear stress on the fault plane and the pore fluid
pressure induced by the sudden introduction of a
shear dislocation at the origin. These results
have been contrasted with those previously
obtained by Booker [1974] and Rice and Cleary
[1976] for a permeable fault. The most notable of
the differences in the solutions are the larger
pore pressure changes near the fault and the in-
crease of the fault plane shear stress over the
undrained value for the impermeable fault. A full
assessment of the effects of these differences on
fault processes, such as aftershocks and slip
stability, must await study of fault models more
realistic than the suddenly introduced disloca-
tion. Nevertheless, the differences seem great
enough that they should be considered in observa-
tional as well as theoretical studies of coupled
deformation~fluid diffusion effects.

Some preliminary results have also been
obtained for the pore pressure induced by a dislo-
cation steadily propagating on an impermeable
fault [Roeloffs and Rudnicki, 1984]. As for the
stationary dislocation, the results substantially
differ from those for the permeable fault
[Roeloffs and Rudnicki, 1985}. Specifically, the
pore pressure at a fixed distance from the
impermeable fault rises more sharply than for the

permeable fault and then falls quickly to zero as
the dislocation passes, but does not reverse sign,
as for the permeable fault. These results are
relevant to predictions of the change of water
well levels in response to creep events [Wesson,
1981; Lippincott et al., 1985].

A question to be answered is whether coupled
deformation-diffusion effects can stabilize propa-
gating slip on an impermeable fault as predicted
by Rice and Simons [1976] for a shear crack propa-
gating on a permeable fault. An important feature
of their solution is that the neighborhood of the
edge of the slip zone always responds in drained
fashion because the pore pressure on the fault
plane is zero. For the impermeable fault, the
pore pressure on the fault plane will not be zero
and the effect on stabilization is unknown. One
possibility for a destabilizing effect, suggested
by the solutions for both the moving and the
suddenly introduced dislocations, is that the pore
pressure on one side of the fault ahead of the
slipping region is increased tending to promote
further slip there.
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